Weighted Mean Calculator
भारित माध्य कैलकुलेटर
Calculate weighted mean for GPA, scores, ratings with frequency support
Enter values and weights as comma-separated lists. Both lists must have the same number of items.
📚 Example: GPA Calculation
📚 उदाहरण: जीपीए गणना
Grades: A(4), B+(3.5), A-(3.7), B(3)
Credits: 3, 4, 2, 3
Weighted Mean = (4×3 + 3.5×4 + 3.7×2 + 3×3) / (3+4+2+3) = 3.48
Enter values and frequencies as comma-separated lists. Both lists must have the same number of items.
📊 Example: Student Marks Distribution
📊 उदाहरण: छात्र अंक वितरण
Marks: 60, 70, 80, 90
Number of Students: 5, 8, 12, 5
Weighted Mean = (60×5 + 70×8 + 80×12 + 90×5) / (5+8+12+5) = 75.33
How to use the Weighted Mean Calculator:
भारित माध्य कैलकुलेटर का उपयोग कैसे करें:
- Select data type: Simple Weighted or With Frequency
- Enter your data values according to the selected type
- For weighted data, enter both values and their weights
- For frequency data, enter values and their frequencies
- Click Calculate to see the weighted mean with detailed calculation
- Download the result for future reference
When to use Weighted Mean:
भारित माध्य का उपयोग कब करें:
- For calculating GPA (Grade Point Average)
- For course grades with different credit hours
- For investment portfolios with different weights
- For survey results with different sample sizes
- When different values have different importance levels
Comparison of Different Means:
विभिन्न माध्यों की तुलना:
| Mean Type | Formula | Use Case |
|---|---|---|
| Arithmetic Mean | \(\frac{\sum x}{n}\) | Equal importance |
| Weighted Mean | \(\frac{\sum w \cdot x}{\sum w}\) | Different importance |
| Geometric Mean | \(\sqrt[n]{\prod x}\) | Growth rates |
| Harmonic Mean | \(\frac{n}{\sum \frac{1}{x}}\) | Rates, ratios |
Enter values and weights as comma-separated lists. Both lists must have the same number of items.
📚 Example: GPA Calculation
📚 उदाहरण: जीपीए गणना
Grades: A(4), B+(3.5), A-(3.7), B(3)
Credits: 3, 4, 2, 3
Weighted Mean = (4×3 + 3.5×4 + 3.7×2 + 3×3) / (3+4+2+3) = 3.48
Enter values and frequencies as comma-separated lists. Both lists must have the same number of items.
📊 Example: Student Marks Distribution
📊 उदाहरण: छात्र अंक वितरण
Marks: 60, 70, 80, 90
Number of Students: 5, 8, 12, 5
Weighted Mean = (60×5 + 70×8 + 80×12 + 90×5) / (5+8+12+5) = 75.33
How to use the Weighted Mean Calculator:
भारित माध्य कैलकुलेटर का उपयोग कैसे करें:
- Select data type: Simple Weighted or With Frequency
- Enter your data values according to the selected type
- For weighted data, enter both values and their weights
- For frequency data, enter values and their frequencies
- Click Calculate to see the weighted mean with detailed calculation
- Download the result for future reference
When to use Weighted Mean:
भारित माध्य का उपयोग कब करें:
- For calculating GPA (Grade Point Average)
- For course grades with different credit hours
- For investment portfolios with different weights
- For survey results with different sample sizes
- When different values have different importance levels
Comparison of Different Means:
विभिन्न माध्यों की तुलना:
| Mean Type | Formula | Use Case |
|---|---|---|
| Arithmetic Mean | \(\frac{\sum x}{n}\) | Equal importance |
| Weighted Mean | \(\frac{\sum w \cdot x}{\sum w}\) | Different importance |
| Geometric Mean | \(\sqrt[n]{\prod x}\) | Growth rates |
| Harmonic Mean | \(\frac{n}{\sum \frac{1}{x}}\) | Rates, ratios |
We love feedback
How would you rate your experience?
Weighted Mean Calculator - भारित माध्य कैलकुलेटर: पूरी गाइड
Weighted Mean (भारित माध्य) statistics का एक fundamental measure of central tendency है जो different importance levels वाले data points को handle करता है। इस comprehensive guide में हम weighted mean के सभी aspects को detailed तरीके से cover करेंगे।
Weighted Mean क्या है? (What is Weighted Mean?)
Weighted Mean या भारित माध्य एक प्रकार का average है जहां कुछ data points दूसरों की तुलना में अधिक contribute करते हैं। यह उन situations के लिए ideal है जहां different values के different levels of importance होते हैं।
Weighted Mean के प्रकार और Calculation Methods
| Data Type | Formula | उपयोग |
|---|---|---|
| Simple Weighted | \[ \bar{x}_w = \frac{\sum w_i x_i}{\sum w_i} \] | Individual values with weights |
| With Frequency | \[ \bar{x}_w = \frac{\sum f_i x_i}{\sum f_i} \] | Frequency distribution data |
| Probability Weights | \[ \bar{x}_w = \sum p_i x_i \] | Probability distributions |
Calculation Methods
1. Simple Weighted Mean
जब data individual values और उनके weights के form में हो:
2. Weighted Mean with Frequency
जब values और उनकी frequencies दी गई हों (frequency ही weight का काम करती है):
3. Alternative Computational Form
Step-by-step calculation के लिए:
Key Properties of Weighted Mean
Importance-Based Calculation
Weighted mean different values को उनके importance के according differently treat करता है, जबकि arithmetic mean सभी values को equally treat करता है।
Flexible Weights
Weights किसी भी positive value के हो सकते हैं - integers, decimals, percentages, आदि। Zero weight वाले values calculation में contribute नहीं करते।
Scale Dependent
Weighted mean weights के scale पर depend करता है। Relative weights matter करते हैं, absolute values नहीं।
Applications of Weighted Mean
GPA Calculation
Academic grades को credit hours के weights के साथ calculate करने के लिए perfect। Different courses के different credit hours को account करता है।
Investment Analysis
Portfolio returns calculate करने के लिए, जहां different investments के different weights होते हैं।
Survey Analysis
Survey results analyze करने के लिए जहां different groups के different sample sizes होते हैं।
Performance Evaluation
Employee performance ratings जहां different criteria के different importance levels होते हैं।
Solved Examples
Example 1: Simple Weighted Mean
Problem: एक student के different subjects के marks और उनके credit hours निम्नलिखित हैं। Weighted average निकालें।
| Subject | Marks (x) | Credits (w) |
|---|---|---|
| Mathematics | 85 | 4 |
| Physics | 90 | 3 |
| Chemistry | 78 | 3 |
| English | 92 | 2 |
| Subject | x | w | w × x |
|---|---|---|---|
| Mathematics | 85 | 4 | 340 |
| Physics | 90 | 3 | 270 |
| Chemistry | 78 | 3 | 234 |
| English | 92 | 2 | 184 |
| Total | 12 | 1028 |
\[ \sum w \cdot x = 340 + 270 + 234 + 184 = 1028 \]
\[ \text{Weighted Mean} = \frac{1028}{12} = 85.67 \]
Example 2: Weighted Mean with Frequency
Problem: एक class के students के marks distribution का weighted mean निकालें:
| Marks Range | Mid Value (x) | Number of Students (f) |
|---|---|---|
| 0-20 | 10 | 5 |
| 20-40 | 30 | 8 |
| 40-60 | 50 | 12 |
| 60-80 | 70 | 10 |
| 80-100 | 90 | 5 |
| x | f | f × x |
|---|---|---|
| 10 | 5 | 50 |
| 30 | 8 | 240 |
| 50 | 12 | 600 |
| 70 | 10 | 700 |
| 90 | 5 | 450 |
| Total | 40 | 2040 |
\[ \sum f \cdot x = 50 + 240 + 600 + 700 + 450 = 2040 \]
\[ \text{Weighted Mean} = \frac{2040}{40} = 51 \]
Example 3: GPA Calculation
Problem: एक student के grades और credit hours निम्नलिखित हैं। GPA निकालें।
| Course | Grade Point (x) | Credit Hours (w) |
|---|---|---|
| Mathematics | 4.0 | 3 |
| Physics | 3.7 | 4 |
| Chemistry | 3.3 | 3 |
| English | 3.0 | 2 |
| Course | x | w | w × x |
|---|---|---|---|
| Mathematics | 4.0 | 3 | 12.0 |
| Physics | 3.7 | 4 | 14.8 |
| Chemistry | 3.3 | 3 | 9.9 |
| English | 3.0 | 2 | 6.0 |
| Total | 12 | 42.7 |
\[ \sum w \cdot x = 12.0 + 14.8 + 9.9 + 6.0 = 42.7 \]
\[ \text{GPA} = \frac{42.7}{12} = 3.56 \]
Weighted Mean vs Arithmetic Mean
| Aspect | Weighted Mean | Arithmetic Mean |
|---|---|---|
| Formula | (∑wᵢxᵢ)/∑wᵢ | (∑xᵢ)/n |
| Use Case | Different importance levels | Equal importance |
| Weights | Explicit weights required | Implicit equal weights |
| Sensitivity | Weights affect result | All values equally affect result |
| Application | GPA, portfolio returns | Average marks, temperature |
Frequently Asked Questions (FAQ)
1. Weighted mean कब use करना चाहिए?
Weighted mean use करें जब:
- Different values के different levels of importance हों
- Frequency distribution data analyze करना हो
- GPA या academic grades calculate करना हो
- Investment portfolio returns calculate करना हो
- Survey results with different sample sizes analyze करना हो
2. Weights कैसे determine करते हैं?
Weights determine करने के लिए:
- Academic context: Credit hours, course difficulty
- Financial context: Investment amounts, portfolio weights
- Survey context: Sample sizes, population proportions
- Business context: Importance factors, priority levels
3. क्या weights negative हो सकते हैं?
Theoretically, weights negative हो सकते हैं, लेकिन practical applications में weights usually positive होते हैं। Negative weights mathematical sense बना सकते हैं, लेकिन interpretation difficult हो जाती है।
Key Points to Remember
- Weighted mean different importance levels को handle करता है
- Weights किसी भी positive value के हो सकते हैं
- GPA calculation weighted mean का सबसे common application है
- Frequency distribution के लिए frequency ही weight का काम करती है
- Weighted mean arithmetic mean से different हो सकता है
- Relative weights matter करते हैं, absolute values नहीं
Important Note
Weighted mean calculate करते समय ensure करें कि weights positive हों और denominator (sum of weights) zero न हो। Zero denominator undefined result देगा। Practical applications में weights usually non-negative होते हैं।
