Harmonic Mean Calculator
हार्मोनिक माध्य कैलकुलेटर
Calculate harmonic mean for speed, rates, ratios with frequency support
All values must be positive numbers greater than 0.
Enter values and frequencies as comma-separated lists. Both lists must have the same number of items.
How to use the Harmonic Mean Calculator:
हार्मोनिक माध्य कैलकुलेटर का उपयोग कैसे करें:
- Select data type: Simple Data or With Frequency
- Enter your data values according to the selected type
- For frequency data, enter both values and their frequencies
- Click Calculate to see the harmonic mean with detailed calculation
- Download the result for future reference
When to use Harmonic Mean:
हार्मोनिक माध्य का उपयोग कब करें:
- For calculating average speed when distances are equal
- For rates and ratios (like price-earnings ratio)
- When dealing with time and rate problems
- For data expressed as rates per unit
- With frequency data when values repeat multiple times
Comparison of Three Means:
तीनों माध्यों की तुलना:
| Mean Type | Formula (Simple) | Formula (With Frequency) | Use Case |
|---|---|---|---|
| Arithmetic Mean | \(\frac{\sum x}{n}\) | \(\frac{\sum f \cdot x}{\sum f}\) | General average |
| Geometric Mean | \(\sqrt[n]{\prod x}\) | \(\exp\left(\frac{\sum f \cdot \ln(x)}{\sum f}\right)\) | Growth rates, ratios |
| Harmonic Mean | \(\frac{n}{\sum \frac{1}{x}}\) | \(\frac{\sum f}{\sum \frac{f}{x}}\) | Speed, rates |
All values must be positive numbers greater than 0.
Enter values and frequencies as comma-separated lists. Both lists must have the same number of items.
How to use the Harmonic Mean Calculator:
हार्मोनिक माध्य कैलकुलेटर का उपयोग कैसे करें:
- Select data type: Simple Data or With Frequency
- Enter your data values according to the selected type
- For frequency data, enter both values and their frequencies
- Click Calculate to see the harmonic mean with detailed calculation
- Download the result for future reference
When to use Harmonic Mean:
हार्मोनिक माध्य का उपयोग कब करें:
- For calculating average speed when distances are equal
- For rates and ratios (like price-earnings ratio)
- When dealing with time and rate problems
- For data expressed as rates per unit
- With frequency data when values repeat multiple times
Comparison of Three Means:
तीनों माध्यों की तुलना:
| Mean Type | Formula (Simple) | Formula (With Frequency) | Use Case |
|---|---|---|---|
| Arithmetic Mean | \(\frac{\sum x}{n}\) | \(\frac{\sum f \cdot x}{\sum f}\) | General average |
| Geometric Mean | \(\sqrt[n]{\prod x}\) | \(\exp\left(\frac{\sum f \cdot \ln(x)}{\sum f}\right)\) | Growth rates, ratios |
| Harmonic Mean | \(\frac{n}{\sum \frac{1}{x}}\) | \(\frac{\sum f}{\sum \frac{f}{x}}\) | Speed, rates |
We love feedback
How would you rate your experience?
Harmonic Mean Calculator - हार्मोनिक माध्य कैलकुलेटर: पूरी गाइड
Harmonic Mean (हार्मोनिक माध्य) statistics का एक specialized measure of central tendency है जो rates, speeds, और ratios के लिए specially designed है। इस comprehensive guide में हम harmonic mean के सभी aspects को detailed तरीके से cover करेंगे।
Harmonic Mean क्या है? (What is Harmonic Mean?)
Harmonic Mean या हार्मोनिक माध्य n numbers का reciprocal of the arithmetic mean of their reciprocals होता है। यह rates और speeds के लिए ideal है।
Harmonic Mean के प्रकार और Calculation Methods
| Data Type | Formula | उपयोग |
|---|---|---|
| Simple Data | \[ HM = \frac{n}{\sum \frac{1}{x}} \] | Individual values, speeds, rates |
| With Frequency | \[ HM = \frac{\sum f}{\sum \frac{f}{x}} \] | Frequency distribution data |
| Weighted Harmonic Mean | \[ HM = \frac{\sum w}{\sum \frac{w}{x}} \] | Weighted data, different importance |
Calculation Methods
1. Simple Harmonic Mean
जब data individual values के form में हो:
2. Harmonic Mean with Frequency
जब values और उनकी frequencies दी गई हों:
3. Weighted Harmonic Mean
जब different weights के साथ values दी गई हों:
Key Properties of Harmonic Mean
Reciprocal Nature
Harmonic mean reciprocal relationships को handle करता है, जो rates और speeds के लिए perfect है।
Most Sensitive to Small Values
Harmonic mean small values के प्रति most sensitive है, क्योंकि reciprocals में small values large values बन जाते हैं।
Always ≤ Geometric Mean ≤ Arithmetic Mean
किसी भी positive data set के लिए, harmonic mean ≤ geometric mean ≤ arithmetic mean होता है।
Applications of Harmonic Mean
Average Speed Calculation
जब same distance different speeds से cover की गई हो, तो harmonic mean correct average speed देता है
Rates and Ratios
Price-earnings ratios, productivity rates, और अन्य rates के average के लिए perfect
Time and Work Problems
Different workers की different work rates के combined rate calculation के लिए accurate results देता है
Financial Analysis
Investment returns, interest rates, और financial ratios के analysis के लिए use होता है
Solved Examples
Example 1: Simple Harmonic Mean
Problem: 2, 4, 8 का harmonic mean निकालें
Values: 2, 4, 8
\[ n = 3 \]
\[ \text{Sum of reciprocals} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = 0.5 + 0.25 + 0.125 = 0.875 \]
\[ \text{Harmonic Mean} = \frac{3}{0.875} = 3.4286 \]
\[ \text{Harmonic Mean} \approx 3.43 \]
Example 2: Harmonic Mean with Frequency
Problem: निम्नलिखित data का harmonic mean निकालें:
| Value (x) | Frequency (f) |
|---|---|
| 2 | 3 |
| 4 | 2 |
| 8 | 1 |
| x | f | f/x |
|---|---|---|
| 2 | 3 | 1.5 |
| 4 | 2 | 0.5 |
| 8 | 1 | 0.125 |
| Total | 6 | 2.125 |
\[ \sum \frac{f}{x} = 2.125 \]
\[ \text{Harmonic Mean} = \frac{6}{2.125} = 2.8235 \]
\[ \text{Harmonic Mean} \approx 2.82 \]
Example 3: Average Speed Calculation
Problem: एक car 60 km की distance 30 km/h की speed से और फिर same 60 km की distance 60 km/h की speed से cover करती है। Average speed निकालें।
Speeds: 30 km/h, 60 km/h
\[ \text{Harmonic Mean} = \frac{2}{\frac{1}{30} + \frac{1}{60}} \]
\[ = \frac{2}{0.0333 + 0.0167} = \frac{2}{0.05} = 40 \text{ km/h} \]
Verification:
Total distance = 60 + 60 = 120 km
Total time = 60/30 + 60/60 = 2 + 1 = 3 hours
Average speed = 120/3 = 40 km/h ✓
Harmonic Mean vs Other Means
| Aspect | Harmonic Mean | Geometric Mean | Arithmetic Mean |
|---|---|---|---|
| Formula | n / ∑(1/x) | √[n](∏x) | (∑x)/n |
| Use Case | Rates, speeds | Growth rates, ratios | General average |
| Sensitivity | Most sensitive to small values | Moderately sensitive | Sensitive to large values |
| Data Requirements | All values > 0 | All values > 0 | Any real numbers |
| Relationship | HM ≤ GM ≤ AM | GM between HM and AM | AM ≥ GM ≥ HM |
Frequently Asked Questions (FAQ)
1. Harmonic mean कब use करना चाहिए?
Harmonic mean use करें जब:
- Average speed calculate करना हो (जब distances equal हों)
- Rates या ratios का average निकालना हो
- Data rates per unit के form में हो
- Time और work problems solve करने हों
- Small values को more weightage देना हो
2. Harmonic mean में zero values क्यों नहीं use कर सकते?
Harmonic mean में zero values use नहीं कर सकते क्योंकि:
- Zero का reciprocal (1/0) undefined होता है
- Mathematical calculation possible नहीं है
- Infinite values आते हैं जो meaningful results नहीं देते
3. Harmonic mean हमेशा सबसे छोटा क्यों होता है?
HM-GM-AM inequality के according, किसी भी set of positive numbers के लिए harmonic mean ≤ geometric mean ≤ arithmetic mean होता है। Equality केवल तब होती है जब सभी numbers equal हों।
Key Points to Remember
- Harmonic mean rates और speeds के लिए ideal है
- All values must be positive (> 0)
- Most sensitive to small values among the three means
- Always less than or equal to geometric and arithmetic means
- Perfect for average speed when distances are equal
- Useful for time, work, and rate problems
Important Note
Harmonic mean केवल positive numbers के लिए defined है। अगर आपके data में zero या negative numbers हैं, तो harmonic mean calculate नहीं कर सकते। ऐसे cases में arithmetic mean या other measures का use करें।
Real-World Applications
Transportation
Average vehicle speed calculation, fuel efficiency analysis, और transportation planning में harmonic mean का extensive use होता है।
Finance and Economics
Price-earnings ratios, investment returns, economic indicators, और financial ratios के analysis के लिए harmonic mean important है।
Science and Engineering
Electrical circuits में resistance calculation, physics में average velocity, और engineering में rate problems के लिए harmonic mean use होता है।
Quality Control
Manufacturing processes में production rates, efficiency ratios, और performance metrics के analysis के लिए harmonic mean valuable है।
