Pearson Correlation Coefficient Calculator
पियर्सन सहसंबंध गुणांक कैलकुलेटर
Calculate Pearson’s r using Direct Method & Indirect Method with Step-by-Step Solutions
Note: Both lists must have the same number of values.
Correlation Interpretation Guide
सहसंबंध व्याख्या मार्गदर्शिका
| r Value | Strength | Interpretation |
|---|---|---|
| ±0.9 to ±1.0 | Very Strong | Perfect linear relationship |
| ±0.7 to ±0.9 | Strong | High degree of correlation |
| ±0.5 to ±0.7 | Moderate | Moderate correlation |
| ±0.3 to ±0.5 | Weak | Low degree of correlation |
| 0 to ±0.3 | Very Weak | Little to no correlation |
Complete Guide to Pearson Correlation Coefficient
What is Pearson Correlation Coefficient?
The Pearson Correlation Coefficient (r) is a statistical measure that calculates the strength and direction of the linear relationship between two variables. Developed by Karl Pearson, this coefficient ranges from -1 to +1, where:
- +1: Perfect positive linear relationship
- -1: Perfect negative linear relationship
- 0: No linear relationship
Direct Method vs Indirect Method
Direct Method: This method calculates deviations from actual means. It’s straightforward but can be computationally intensive with large datasets or decimal numbers.
Indirect Method (Assumed Mean Method): This method uses assumed means to simplify calculations. It reduces computational complexity and is preferred for larger datasets.
Applications of Pearson Correlation
- Finance: Analyze correlation between stocks for portfolio diversification
- Healthcare: Study relationship between drug dosage and patient recovery
- Education: Examine correlation between study hours and exam scores
- Marketing: Analyze relationship between ad spend and sales revenue
- Quality Control: Study correlation between temperature and product quality
How to Calculate in Excel
In Microsoft Excel, you can use the CORREL function:
Example: =CORREL(A2:A100, B2:B100)
Understanding r² (Coefficient of Determination)
The square of Pearson’s r (r²) represents the proportion of variance in the dependent variable that can be explained by the independent variable. For example:
- r = 0.8 → r² = 0.64 → 64% of variation in Y explained by X
- r = 0.5 → r² = 0.25 → 25% of variation in Y explained by X
Common Practice Problems
Try these practice problems to master Pearson correlation calculation:
- Calculate correlation between study hours (X: 2,4,6,8,10) and exam scores (Y: 65,75,85,95,100)
- Find correlation between temperature (X: 20,25,30,35,40) and ice cream sales (Y: 50,75,100,125,150)
- Determine correlation between advertising spend (X: 1000,2000,3000,4000,5000) and sales (Y: 15000,25000,35000,45000,55000)
Limitations and Considerations
- Pearson correlation measures only linear relationships
- Outliers can significantly affect the correlation coefficient
- Correlation does not imply causation
- Requires interval or ratio scale data
- Assumes homoscedasticity (constant variance)
Related Calculators
संबंधित कैलकुलेटर
- Mean Calculator
- Standard Deviation Calculator
- Linear Regression Calculator
- Spearman Rank Correlation Calculator
- Hypothesis Testing Calculator
|
Table will appear here after calculation
|
- Enter your X and Y values
- Select calculation method
- Click “Calculate Correlation”
- View detailed step-by-step solution
पियर्सन सहसंबंध गुणांक | Pearson Correlation Coefficient Calculator – Complete Guide
Free Pearson Correlation Calculator Online | Direct & Indirect Methods | Step-by-Step Solutions | Pearson’s r Formula | Correlation Coefficient Calculation
What is Pearson Correlation Coefficient? | पियर्सन सहसंबंध गुणांक क्या है?
Pearson Correlation Coefficient (Pearson’s r) is a statistical measure that calculates the strength and direction of the linear relationship between two continuous variables. Developed by Karl Pearson in 1895, it’s one of the most widely used correlation measures in statistics, research, and data analysis.
पियर्सन सहसंबंध गुणांक (Pearson’s r) एक सांख्यिकीय माप है जो दो सतत चरों के बीच रैखिक संबंध की शक्ति और दिशा की गणना करता है। कार्ल पियर्सन द्वारा 1895 में विकसित, यह सांख्यिकी, शोध और डेटा विश्लेषण में सबसे व्यापक रूप से उपयोग किए जाने वाले सहसंबंध उपायों में से एक है।
Key Features of Pearson Correlation Coefficient:
Range of Values
मानों की सीमा
Perfect Positive Correlation
पूर्ण सकारात्मक संबंध
Perfect Negative Correlation
पूर्ण नकारात्मक संबंध
No Linear Correlation
कोई रैखिक संबंध नहीं
Pearson Correlation Calculator Features | पियर्सन सहसंबंध कैलकुलेटर विशेषताएं
✓ Direct Method Calculation
Calculate using actual means with formula:
\( r = \frac{\Sigma d_x d_y}{\sqrt{\Sigma d_x^2 \times \Sigma d_y^2}} \)
Perfect for small datasets and exact calculations
✓ Indirect Method Calculation
Calculate using assumed mean with formula:
\( r = \frac{\Sigma dxdy – \frac{\Sigma dx \times \Sigma dy}{N}}{\sqrt{\Sigma d^2 x – \frac{(\Sigma dx)^2}{N} \times \sqrt{\Sigma d^2 y – \frac{(\Sigma dy)^2}{N}}}} \)
Ideal for large datasets and decimal values
✓ Step-by-Step Solutions
Detailed calculation steps with formulas
Complete calculation table with all values
Interpretation guide for correlation values
Perfect for students and researchers
Pearson Correlation Formula | पियर्सन सहसंबंध सूत्र
Direct Method Formula:
Indirect Method Formula (Assumed Mean):
Where | जहाँ:
- \( r \) = Pearson correlation coefficient
- \( X_i \) = Individual X values
- \( Y_i \) = Individual Y values
- \( \bar{X} \) = Mean of X values
- \( \bar{Y} \) = Mean of Y values
- \( dx = X – A \) (A = Assumed mean for X)
- \( dy = Y – B \) (B = Assumed mean for Y)
- \( n \) = Number of data pairs
- \( \Sigma \) = Summation symbol
How to Calculate Pearson Correlation Coefficient | पियर्सन सहसंबंध गुणांक की गणना कैसे करें
Step-by-Step Calculation Process:
Step 1: Direct Method Calculation
- Calculate mean of X values: \( \bar{X} = \frac{\Sigma X}{n} \)
- Calculate mean of Y values: \( \bar{Y} = \frac{\Sigma Y}{n} \)
- Find deviations: \( d_x = X – \bar{X} \), \( d_y = Y – \bar{Y} \)
- Calculate \( d_x^2 \), \( d_y^2 \), and \( d_x d_y \)
- Find sums: \( \Sigma d_x^2 \), \( \Sigma d_y^2 \), \( \Sigma d_x d_y \)
- Apply formula: \( r = \frac{\Sigma d_x d_y}{\sqrt{\Sigma d_x^2 \times \Sigma d_y^2}} \)
Step 2: Indirect Method Calculation
- Choose assumed means A (for X) and B (for Y)
- Calculate \( dx = X – A \), \( dy = Y – B \)
- Find \( dx^2 \), \( dy^2 \), and \( dx \times dy \)
- Calculate sums: \( \Sigma dx \), \( \Sigma dy \), \( \Sigma dx^2 \), \( \Sigma dy^2 \), \( \Sigma dxdy \)
- Apply formula: \[ r = \frac{\Sigma dxdy – \frac{(\Sigma dx)(\Sigma dy)}{n}}{\sqrt{[\Sigma dx^2 – \frac{(\Sigma dx)^2}{n}][\Sigma dy^2 – \frac{(\Sigma dy)^2}{n}]}} \]
Step 3: Interpretation of Results
- ±0.90 to ±1.00: Very strong correlation
- ±0.70 to ±0.89: Strong correlation
- ±0.50 to ±0.69: Moderate correlation
- ±0.30 to ±0.49: Weak correlation
- 0.00 to ±0.29: Very weak or no correlation
Applications of Pearson Correlation | पियर्सन सहसंबंध के अनुप्रयोग
📊 Research & Statistics
- Academic research studies
- Statistical analysis
- Data science projects
- Market research analysis
- Scientific experiments
💼 Business & Finance
- Stock market analysis
- Portfolio diversification
- Sales forecasting
- Marketing analytics
- Risk assessment
🏥 Healthcare & Medicine
- Clinical trials analysis
- Drug effectiveness studies
- Patient data analysis
- Epidemiological research
- Medical statistics
🎓 Education & Psychology
- Educational research
- Psychological testing
- Student performance analysis
- Test validation studies
- Behavioral research
Direct Method vs Indirect Method Comparison | प्रत्यक्ष vs अप्रत्यक्ष विधि तुलना
| Feature | Direct Method | Indirect Method |
|---|---|---|
| Accuracy | High accuracy | High accuracy |
| Calculation Complexity | More complex | Simpler calculations |
| Best For | Small datasets | Large datasets |
| Decimal Handling | Can be messy | Handles well |
| Computational Time | More time | Less time |
| Manual Calculation | Difficult | Easier |
How to Use Pearson Correlation Calculator | पियर्सन सहसंबंध कैलकुलेटर कैसे उपयोग करें
Simple 4-Step Process:
Enter Data
Input X and Y values separated by commas
Example: 10, 20, 30, 40, 50
Select Method
Choose Direct or Indirect Method
Based on your data type
Calculate
Click Calculate button
Get instant results
View Results
See correlation coefficient
With interpretation guide
