Mean Median Mode Range Calculator (MMMR) | माध्य माध्यिका बहुलक परास कैलकुलेटर – Central Tendency Calculator

Mean Median Mode Range Calculator (MMMR) | माध्य माध्यिका बहुलक परास कैलकुलेटर – Central Tendency Calculator

Mean Median Mode Range Calculator (MMMR)

माध्य, माध्यिका, बहुलक, परास कैलकुलेटर

Calculate Central Tendency Measures with Step-by-Step Solutions

Individual
Discrete
Continuous
Statistical Results
Mean
24.00
Median
23.00
Mode
23
Range
36.00
Statistical Measure Value
Step-by-Step Solution
Data Distribution

How to use the Statistics Calculator:

  1. Select the type of series: Individual, Discrete, or Continuous
  2. Enter your data values according to the selected series type
  3. Click Calculate to see all statistical measures
  4. View detailed table, step-by-step solution and chart
  5. Download the result for future reference
Individual
Discrete
Continuous

How to use the Statistics Calculator:

  1. Select the type of series: Individual, Discrete, or Continuous
  2. Enter your data values according to the selected series type
  3. Click Calculate to see all statistical measures
  4. View detailed table, step-by-step solution and chart
  5. Download the result for future reference
Statistical Results
Mean
24.00
Median
23.00
Mode
23
Range
36.00
Statistical Measure Value
Step-by-Step Solution
Data Distribution
Mean Median Mode Range Calculator - Complete Guide with Formulas & Examples | माध्य माध्यिका बहुलक परास कैलकुलेटर

Mean Median Mode Range Calculator - Complete Guide

माध्य माध्यिका बहुलक परास कैलकुलेटर - संपूर्ण मार्गदर्शिका

What are Mean, Median, Mode and Range?

Mean, Median, Mode and Range are the four fundamental statistical measures used to describe data sets. They help us understand the central tendency and dispersion of data, making them essential for data analysis in mathematics, statistics, research, and everyday life.

माध्य, माध्यिका, बहुलक और परास क्या हैं?

माध्य, माध्यिका, बहुलक और परास चार मूलभूत सांख्यिकीय माप हैं जिनका उपयोग डेटा सेटों का वर्णन करने के लिए किया जाता है। ये हमें डेटा की केंद्रीय प्रवृत्ति और फैलाव को समझने में मदद करते हैं, जिससे ये गणित, सांख्यिकी, शोध और रोजमर्रा की जिंदगी में डेटा विश्लेषण के लिए आवश्यक हो जाते हैं।

1. Mean (Average) - माध्य

Formula - सूत्र

Mean = Sum of all values / Number of values
माध्य = सभी मानों का योग / मानों की संख्या

The mean, commonly known as the average, is calculated by adding all values in a data set and dividing by the number of values. It's the most commonly used measure of central tendency but can be affected by outliers.

Example - उदाहरण

Data: 10, 15, 20, 25, 30

Calculation: (10 + 15 + 20 + 25 + 30) / 5 = 100 / 5 = 20

Mean: 20

2. Median - माध्यिका

Formula - सूत्र

Median = Middle value when data is sorted
माध्यिका = क्रमबद्ध डेटा का मध्य मान

The median is the middle value in a sorted data set. For even number of values, it's the average of two middle values. Median is less affected by outliers compared to mean.

Example - उदाहरण

Odd data points: 10, 15, 20, 25, 30

Median: 20 (middle value)

Even data points: 10, 15, 20, 25, 30, 35

Median: (20 + 25) / 2 = 22.5

3. Mode - बहुलक

Formula - सूत्र

Mode = Most frequently occurring value(s)
बहुलक = सबसे अधिक बार आने वाला मान

The mode is the value that appears most frequently in a data set. A data set can have one mode (unimodal), two modes (bimodal), or multiple modes (multimodal).

Example - उदाहरण

Data: 10, 15, 20, 20, 25, 30

Mode: 20 (appears twice)

Bimodal data: 10, 15, 15, 20, 20, 25

Modes: 15 and 20

4. Range - परास

Formula - सूत्र

Range = Largest value - Smallest value
परास = सबसे बड़ा मान - सबसे छोटा मान

Range measures the spread or dispersion of data. It shows how spread out the values are in a data set. While easy to calculate, it's sensitive to outliers.

Example - उदाहरण

Data: 10, 15, 20, 25, 30

Calculation: 30 (largest) - 10 (smallest) = 20

Range: 20

Comparison Table

Measure Definition When to Use Advantages Limitations
Mean Average of all values Normally distributed data Uses all data points Affected by outliers
Median Middle value Skewed data, outliers present Robust to outliers Ignores extreme values
Mode Most frequent value Categorical data, finding peaks Works for non-numeric data May not exist or be unique
Range Difference between max and min Quick spread assessment Easy to calculate Sensitive to outliers

Real-World Applications

Education & Exams

Use Case: Calculating average marks, median scores, most frequent grades, and score ranges

Example: Class test scores analysis to identify performance patterns

Business & Economics

Use Case: Sales analysis, price ranges, customer age groups, income distribution

Example: Finding average sales per day and identifying best-selling products

Healthcare & Research

Use Case: Patient age analysis, treatment effectiveness, symptom frequency

Example: Calculating average recovery time and most common symptoms

Frequently Asked Questions

Q: When should I use mean vs median?

A: Use mean for normally distributed data without outliers. Use median when data has outliers or is skewed, as median is less affected by extreme values.

Q: Can a data set have more than one mode?

A: Yes, a data set can be bimodal (two modes) or multimodal (multiple modes) if multiple values have the same highest frequency.

Q: How do you calculate median for even number of values?

A: For even number of values, median is calculated as the average of the two middle values when the data is sorted in ascending order.

Q: What is the limitation of using range?

A: Range only considers the extreme values and ignores the distribution of all other values, making it sensitive to outliers.

Step-by-Step Calculation Guide

Complete Example Calculation

Data Set: 12, 15, 18, 22, 22, 25, 28, 30, 35

Step 1: Sort Data 12, 15, 18, 22, 22, 25, 28, 30, 35
Step 2: Calculate Mean (12+15+18+22+22+25+28+30+35)/9 = 207/9 = 23
Step 3: Find Median Middle value (5th position) = 22
Step 4: Identify Mode Most frequent value = 22 (appears twice)
Step 5: Calculate Range 35 (max) - 12 (min) = 23

Results: Mean = 23, Median = 22, Mode = 22, Range = 23

Master Statistical Calculations

Understanding Mean, Median, Mode and Range is essential for data analysis. These fundamental statistical measures provide valuable insights into data distribution and central tendency.

माध्य, माध्यिका, बहुलक और परास को समझना डेटा विश्लेषण के लिए आवश्यक है। ये मूलभूत सांख्यिकीय माप डेटा वितरण और केंद्रीय प्रवृत्ति में मूल्यवान अंतर्दृष्टि प्रदान करते हैं।

Scroll to Top